1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
// Copyright 2017 Brian Langenberger
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Traits and helpers for bitstream handling functionality
//!
//! Bitstream readers are for reading signed and unsigned integer
//! values from a stream whose sizes may not be whole bytes.
//! Bitstream writers are for writing signed and unsigned integer
//! values to a stream, also potentially un-aligned at a whole byte.
//!
//! Both big-endian and little-endian streams are supported.
//!
//! The only requirement for wrapped reader streams is that they must
//! implement the `Read` trait, and the only requirement
//! for writer streams is that they must implement the `Write` trait.
//!
//! In addition, reader streams do not consume any more bytes
//! from the underlying reader than necessary, buffering only a
//! single partial byte as needed.
//! Writer streams also write out all whole bytes as they are accumulated.
//!
//! Readers and writers are also designed to work with integer
//! types of any possible size.
//! Many of Rust's built-in integer types are supported by default.

#![warn(missing_docs)]

use std::ops::{Shl, ShlAssign, Shr, ShrAssign, Rem, RemAssign, BitOrAssign,
               BitXor, Not, Sub};
use std::marker::PhantomData;
use std::fmt::Debug;

pub mod read;
pub mod write;
pub mod huffman;
pub use read::BitReader;
pub use write::BitWriter;


/// This trait extends many common integer types (both unsigned and signed)
/// with a few trivial methods so that they can be used
/// with the bitstream handling traits.
pub trait Numeric: Sized + Copy + Default + Debug + PartialOrd +
    Shl<u32,Output=Self> + ShlAssign<u32> +
    Shr<u32,Output=Self> + ShrAssign<u32> +
    Rem<Self,Output=Self> + RemAssign<Self> +
    BitOrAssign<Self> + BitXor<Self,Output=Self> + Not<Output=Self> +
    Sub<Self,Output=Self> {

    /// The value of 1 in this type
    fn one() -> Self;

    /// Returns true if this value is 0, in its type
    fn is_zero(self) -> bool;

    /// Returns a `u8` value in this type
    fn from_u8(u: u8) -> Self;

    /// Assuming 0 <= value < 256, returns this value as a `u8` type
    fn to_u8(self) -> u8;

    /// Counts the number of 1 bits
    fn count_ones(self) -> u32;

    /// Counts the number of leading zeros
    fn leading_zeros(self) -> u32;

    /// Counts the number of trailing zeros
    fn trailing_zeros(self) -> u32;

    /// Size of type in bits
    fn bits_size() -> u32;
}

macro_rules! define_numeric {
    ($t:ty, $bits:expr) => {
        impl Numeric for $t {
            #[inline(always)]
            fn one() -> Self {1}
            #[inline(always)]
            fn is_zero(self) -> bool {self == 0}
            #[inline(always)]
            fn from_u8(u: u8) -> Self {u as $t}
            #[inline(always)]
            fn to_u8(self) -> u8 {self as u8}
            #[inline(always)]
            fn count_ones(self) -> u32 {self.count_ones()}
            #[inline(always)]
            fn leading_zeros(self) -> u32 {self.leading_zeros()}
            #[inline(always)]
            fn trailing_zeros(self) -> u32 {self.trailing_zeros()}
            #[inline(always)]
            fn bits_size() -> u32 {$bits}
        }
    }
}

/// This trait extends many common signed integer types
/// so that they can be used with the bitstream handling traits.
pub trait SignedNumeric: Numeric {
    /// Returns true if this value is negative
    fn is_negative(self) -> bool;

    /// Given a two-complement positive value and certain number of bits,
    /// returns this value as a negative number.
    fn as_negative(self, bits: u32) -> Self;

    /// Given a negative value and a certain number of bits,
    /// returns this value as a twos-complement positive number.
    fn as_unsigned(self, bits: u32) -> Self;
}

macro_rules! define_signed_numeric {
    ($t:ty) => {
        impl SignedNumeric for $t {
            #[inline(always)]
            fn is_negative(self) -> bool {self < 0}
            #[inline(always)]
            fn as_negative(self, bits: u32) -> Self {self + (-1 << (bits - 1))}
            #[inline(always)]
            fn as_unsigned(self, bits: u32) -> Self {self - (-1 << (bits - 1))}
        }
    }
}

define_numeric!(u8, 8);
define_numeric!(i8, 8);
define_numeric!(u16, 16);
define_numeric!(i16, 16);
define_numeric!(u32, 32);
define_numeric!(i32, 32);
define_numeric!(u64, 64);
define_numeric!(i64, 64);

define_signed_numeric!(i8);
define_signed_numeric!(i16);
define_signed_numeric!(i32);
define_signed_numeric!(i64);

/// A stream's endianness, or byte order, for determining
/// how bits should be read.
///
/// It comes in `BigEndian` and `LittleEndian` varieties
/// (which may be shortened to `BE` and `LE`)
/// and is not something programmers should have to implement
/// in most cases.
pub trait Endianness {
    /// Pushes the given bits and value onto an accumulator
    /// with the given bits and value.
    fn push<N>(bits_acc: &mut u32,
               value_acc: &mut N,
               bits: u32,
               value: N) where N: Numeric;

    /// Pops a value with the given number of bits from an accumulator
    /// with the given bits and value.
    fn pop<N>(bits_acc: &mut u32,
              value_acc: &mut N,
              bits: u32) -> N where N: Numeric;

    /// Drops the given number of bits from an accumulator
    /// with the given bits and value.
    fn drop<N>(bits_acc: &mut u32,
               value_acc: &mut N,
               bits: u32) where N: Numeric;

    /// Returns the next number of 0 bits from an accumulator
    /// with the given bits and value.
    fn next_zeros<N>(bits: u32, value: N) -> u32 where N: Numeric;

    /// Returns the next number of 1 bits from an accumulator
    /// with the given bits and value.
    fn next_ones<N>(bits: u32, value: N) -> u32 where N: Numeric;
}

/// Big-endian, or most significant bits first
pub struct BigEndian {}

/// Big-endian, or most significant bits first
pub type BE = BigEndian;

impl Endianness for BigEndian {
    #[inline]
    fn push<N>(bits_acc: &mut u32,
               value_acc: &mut N,
               bits: u32,
               value: N) where N: Numeric {
        if !value_acc.is_zero() {
            *value_acc <<= bits;
        }
        *value_acc |= value;
        *bits_acc += bits;
    }

    #[inline]
    fn pop<N>(bits_acc: &mut u32,
              value_acc: &mut N,
              bits: u32) -> N where N: Numeric {
        if bits < *bits_acc {
            let offset = *bits_acc - bits;
            let to_return = *value_acc >> offset;
            *value_acc %= N::one() << offset;
            *bits_acc -= bits;
            to_return
        } else {
            let to_return = *value_acc;
            *value_acc = N::default();
            *bits_acc = 0;
            to_return
        }
    }

    #[inline]
    fn drop<N>(bits_acc: &mut u32,
               value_acc: &mut N,
               bits: u32) where N: Numeric {
        if bits < *bits_acc {
            *value_acc %= N::one() << (*bits_acc - bits);
            *bits_acc -= bits;
        } else {
            *value_acc = N::default();
            *bits_acc = 0;
        }
    }

    #[inline]
    fn next_zeros<N>(bits: u32, value: N) -> u32 where N: Numeric {
        value.leading_zeros() - (N::bits_size() - bits)
    }

    #[inline]
    fn next_ones<N>(bits: u32, value: N) -> u32 where N: Numeric {
        if bits < N::bits_size() {
            (value ^ ((N::one() << bits) - N::one())).leading_zeros() -
            (N::bits_size() - bits)
        } else {
            (!value).leading_zeros()
        }
    }
}

/// Little-endian, or least significant bits first
pub struct LittleEndian {}

/// Little-endian, or least significant bits first
pub type LE = LittleEndian;

impl Endianness for LittleEndian {
    #[inline]
    fn push<N>(bits_acc: &mut u32,
               value_acc: &mut N,
               bits: u32,
               mut value: N) where N: Numeric {
        value <<= *bits_acc;
        *value_acc |= value;
        *bits_acc += bits;
    }

    #[inline]
    fn pop<N>(bits_acc: &mut u32,
              value_acc: &mut N,
              bits: u32) -> N where N: Numeric {
        if bits < *bits_acc {
            let to_return = *value_acc % (N::one() << bits);
            *value_acc >>= bits;
            *bits_acc -= bits;
            to_return
        } else {
            let to_return = *value_acc;
            *value_acc = N::default();
            *bits_acc = 0;
            to_return
        }
    }

    #[inline]
    fn drop<N>(bits_acc: &mut u32,
               value_acc: &mut N,
               bits: u32) where N: Numeric {
        if bits < *bits_acc {
            *value_acc >>= bits;
            *bits_acc -= bits;
        } else {
            *value_acc = N::default();
            *bits_acc = 0;
        }
    }

    #[inline(always)]
    fn next_zeros<N>(_: u32, value: N) -> u32 where N: Numeric {
        value.trailing_zeros()
    }

    #[inline]
    fn next_ones<N>(_: u32, value: N) -> u32 where N: Numeric {
        (value ^ !N::default()).trailing_zeros()
    }
}

/// A queue for efficiently pushing bits onto a value
/// and popping them off a value.
pub struct BitQueue<E: Endianness, N: Numeric> {
    phantom: PhantomData<E>,
    value: N,
    bits: u32,
}

impl<E: Endianness, N: Numeric> BitQueue<E, N> {
    /// Returns a new empty queue
    #[inline]
    pub fn new() -> BitQueue<E, N> {
        BitQueue{phantom: PhantomData, value: N::default(), bits: 0}
    }

    /// Creates a new queue from the given value with the given size
    #[inline]
    pub fn from_value(value: N, bits: u32) -> BitQueue<E,N> {
        BitQueue{phantom: PhantomData, value: value, bits: bits}
    }

    /// Sets the queue to a given value with the given number of bits
    #[inline]
    pub fn set(&mut self, value: N, bits: u32) {
        self.value = value;
        self.bits = bits;
    }

    /// Consumes the queue and returns its current value
    #[inline(always)]
    pub fn value(self) -> N {self.value}

    /// Returns the total bits in the queue
    #[inline(always)]
    pub fn len(&self) -> u32 {self.bits}

    /// Returns the maximum bits the queue can hold
    #[inline(always)]
    pub fn max_len(&self) -> u32 {N::bits_size()}

    /// Returns true if the queue is empty
    #[inline(always)]
    pub fn is_empty(&self) -> bool {self.bits == 0}

    /// Returns true if the queue is full
    #[inline(always)]
    pub fn is_full(&self) -> bool {self.bits == N::bits_size()}

    /// Drops all values in the queue
    #[inline(always)]
    pub fn clear(&mut self) {self.set(N::default(), 0)}

    /// Returns true if all bits remaining in the queue are 0
    #[inline(always)]
    pub fn all_0(&self) -> bool {self.value.count_ones() == 0}

    /// Returns true if all bits remaining in the queue are 1
    #[inline(always)]
    pub fn all_1(&self) -> bool {self.value.count_ones() == self.bits}

    /// Pushes a value with the given number of bits onto the tail of the queue
    #[inline(always)]
    pub fn push(&mut self, bits: u32, value: N) {
        E::push(&mut self.bits, &mut self.value, bits, value)
    }

    /// Pops a value with the given number of bits from the head of the queue
    #[inline(always)]
    pub fn pop(&mut self, bits: u32) -> N {
        E::pop(&mut self.bits, &mut self.value, bits)
    }

    /// Drops the given number of bits from the head of the queue
    /// without returning them.
    #[inline(always)]
    pub fn drop(&mut self, bits: u32) {
        E::drop(&mut self.bits, &mut self.value, bits)
    }

    /// Pops all 0 bits up to and including the next 1 bit
    /// and returns the amount of 0 bits popped
    #[inline]
    pub fn pop_0(&mut self) -> u32 {
        let zeros = E::next_zeros(self.bits, self.value);
        self.drop(zeros + 1);
        zeros
    }

    /// Pops all 1 bits up to and including the next 0 bit
    /// and returns the amount of 1 bits popped
    #[inline]
    pub fn pop_1(&mut self) -> u32 {
        let ones = E::next_ones(self.bits, self.value);
        self.drop(ones + 1);
        ones
    }
}

impl<E: Endianness> BitQueue<E, u8> {
    /// Returns the state of the queue as a single value
    /// which can be used to perform lookups.
    #[inline(always)]
    pub fn to_state(&self) -> usize {
        (1 << self.bits) | (self.value as usize)
    }
}