1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
// Copyright 2017 Brian Langenberger
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Traits and implementations for reading bits from a stream.
//!
//! ## Example
//!
//! Reading the initial STREAMINFO block from a FLAC file,
//! as documented in its
//! [specification](https://xiph.org/flac/format.html#stream).
//!
//! ```
//! use std::io::{Cursor, Read};
//! use bitstream_io::{BE, BitReader};
//!
//! let flac: Vec<u8> = vec![0x66,0x4C,0x61,0x43,0x00,0x00,0x00,0x22,
//!                          0x10,0x00,0x10,0x00,0x00,0x06,0x06,0x00,
//!                          0x21,0x62,0x0A,0xC4,0x42,0xF0,0x00,0x04,
//!                          0xA6,0xCC,0xFA,0xF2,0x69,0x2F,0xFD,0xEC,
//!                          0x2D,0x5B,0x30,0x01,0x76,0xB4,0x62,0x88,
//!                          0x7D,0x92];
//!
//! let mut cursor = Cursor::new(&flac);
//! {
//!     let mut reader = BitReader::<BE>::new(&mut cursor);
//!
//!     // stream marker
//!     let mut file_header: [u8; 4] = [0, 0, 0, 0];
//!     reader.read_bytes(&mut file_header).unwrap();
//!     assert_eq!(&file_header, b"fLaC");
//!
//!     // metadata block header
//!     let last_block: bool = reader.read_bit().unwrap();
//!     let block_type: u8 = reader.read(7).unwrap();
//!     let block_size: u32 = reader.read(24).unwrap();
//!     assert_eq!(last_block, false);
//!     assert_eq!(block_type, 0);
//!     assert_eq!(block_size, 34);
//!
//!     // STREAMINFO block
//!     let minimum_block_size: u16 = reader.read(16).unwrap();
//!     let maximum_block_size: u16 = reader.read(16).unwrap();
//!     let minimum_frame_size: u32 = reader.read(24).unwrap();
//!     let maximum_frame_size: u32 = reader.read(24).unwrap();
//!     let sample_rate: u32 = reader.read(20).unwrap();
//!     let channels = reader.read::<u8>(3).unwrap() + 1;
//!     let bits_per_sample = reader.read::<u8>(5).unwrap() + 1;
//!     let total_samples: u64 = reader.read(36).unwrap();
//!     assert_eq!(minimum_block_size, 4096);
//!     assert_eq!(maximum_block_size, 4096);
//!     assert_eq!(minimum_frame_size, 1542);
//!     assert_eq!(maximum_frame_size, 8546);
//!     assert_eq!(sample_rate, 44100);
//!     assert_eq!(channels, 2);
//!     assert_eq!(bits_per_sample, 16);
//!     assert_eq!(total_samples, 304844);
//! }
//!
//! // STREAMINFO's MD5 sum
//!
//! // Note that the wrapped reader can be used once bitstream reading
//! // is finished at exactly the position one would expect.
//!
//! let mut md5 = [0; 16];
//! cursor.read_exact(&mut md5).unwrap();
//! assert_eq!(&md5,
//!     b"\xFA\xF2\x69\x2F\xFD\xEC\x2D\x5B\x30\x01\x76\xB4\x62\x88\x7D\x92");
//! ```

#![warn(missing_docs)]

use std::io;

use super::{Numeric, SignedNumeric, BitQueue,
            Endianness, BigEndian, LittleEndian};
use huffman::ReadHuffmanTree;

/// For reading non-aligned bits from a stream of bytes in a given endianness.
///
/// This will read exactly as many whole bytes needed to return
/// the requested number of bits.  It may cache up to a single partial byte
/// but no more.
pub struct BitReader<'a, E: Endianness> {
    reader: &'a mut io::Read,
    bitqueue: BitQueue<E,u8>
}

impl<'a, E: Endianness> BitReader<'a, E> {
    /// Wraps a BitReader around something that implements `Read`
    pub fn new(reader: &mut io::Read) -> BitReader<E> {
        BitReader{reader: reader, bitqueue: BitQueue::new()}
    }

    /// Reads a single bit from the stream.
    /// `true` indicates 1, `false` indicates 0
    ///
    /// # Errors
    ///
    /// Passes along any I/O error from the underlying stream.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::io::{Read, Cursor};
    /// use bitstream_io::{BigEndian, BitReader};
    /// let data = [0b10110111];
    /// let mut cursor = Cursor::new(&data);
    /// let mut reader = BitReader::<BigEndian>::new(&mut cursor);
    /// assert_eq!(reader.read_bit().unwrap(), true);
    /// assert_eq!(reader.read_bit().unwrap(), false);
    /// assert_eq!(reader.read_bit().unwrap(), true);
    /// assert_eq!(reader.read_bit().unwrap(), true);
    /// assert_eq!(reader.read_bit().unwrap(), false);
    /// assert_eq!(reader.read_bit().unwrap(), true);
    /// assert_eq!(reader.read_bit().unwrap(), true);
    /// assert_eq!(reader.read_bit().unwrap(), true);
    /// ```
    ///
    /// ```
    /// use std::io::{Read, Cursor};
    /// use bitstream_io::{LittleEndian, BitReader};
    /// let data = [0b10110111];
    /// let mut cursor = Cursor::new(&data);
    /// let mut reader = BitReader::<LittleEndian>::new(&mut cursor);
    /// assert_eq!(reader.read_bit().unwrap(), true);
    /// assert_eq!(reader.read_bit().unwrap(), true);
    /// assert_eq!(reader.read_bit().unwrap(), true);
    /// assert_eq!(reader.read_bit().unwrap(), false);
    /// assert_eq!(reader.read_bit().unwrap(), true);
    /// assert_eq!(reader.read_bit().unwrap(), true);
    /// assert_eq!(reader.read_bit().unwrap(), false);
    /// assert_eq!(reader.read_bit().unwrap(), true);
    /// ```
    #[inline(always)]
    pub fn read_bit(&mut self) -> Result<bool, io::Error> {
        if self.bitqueue.is_empty() {
            self.bitqueue.set(read_byte(self.reader)?, 8);
        }
        Ok(self.bitqueue.pop(1) == 1)
    }

    /// Reads an unsigned value from the stream with
    /// the given number of bits.
    ///
    /// # Errors
    ///
    /// Passes along any I/O error from the underlying stream.
    /// Also returns an error if the output type is too small
    /// to hold the requested number of bits.
    ///
    /// # Examples
    /// ```
    /// use std::io::{Read, Cursor};
    /// use bitstream_io::{BigEndian, BitReader};
    /// let data = [0b10110111];
    /// let mut cursor = Cursor::new(&data);
    /// let mut reader = BitReader::<BigEndian>::new(&mut cursor);
    /// assert_eq!(reader.read::<u8>(1).unwrap(), 0b1);
    /// assert_eq!(reader.read::<u8>(2).unwrap(), 0b01);
    /// assert_eq!(reader.read::<u8>(5).unwrap(), 0b10111);
    /// ```
    ///
    /// ```
    /// use std::io::{Read, Cursor};
    /// use bitstream_io::{LittleEndian, BitReader};
    /// let data = [0b10110111];
    /// let mut cursor = Cursor::new(&data);
    /// let mut reader = BitReader::<LittleEndian>::new(&mut cursor);
    /// assert_eq!(reader.read::<u8>(1).unwrap(), 0b1);
    /// assert_eq!(reader.read::<u8>(2).unwrap(), 0b11);
    /// assert_eq!(reader.read::<u8>(5).unwrap(), 0b10110);
    /// ```
    ///
    /// ```
    /// use std::io::{Read, Cursor};
    /// use bitstream_io::{BigEndian, BitReader};
    /// let data = [0;10];
    /// let mut cursor = Cursor::new(&data);
    /// let mut reader = BitReader::<BigEndian>::new(&mut cursor);
    /// assert!(reader.read::<u8>(9).is_err());    // can't read  9 bits to u8
    /// assert!(reader.read::<u16>(17).is_err());  // can't read 17 bits to u16
    /// assert!(reader.read::<u32>(33).is_err());  // can't read 33 bits to u32
    /// assert!(reader.read::<u64>(65).is_err());  // can't read 65 bits to u64
    /// ```
    pub fn read<U>(&mut self, mut bits: u32) -> Result<U, io::Error>
        where U: Numeric {

        use std::cmp::min;

        if bits <= U::bits_size() {
            let mut acc = BitQueue::new();
            let to_transfer = min(self.bitqueue.len(), bits);
            if to_transfer != 0 {
                acc.push(to_transfer,
                         U::from_u8(self.bitqueue.pop(to_transfer)));
                bits -= to_transfer;
            }

            read_aligned(&mut self.reader, bits / 8, &mut acc)
            .and_then(|()| read_unaligned(&mut self.reader,
                                          bits % 8,
                                          &mut acc,
                                          &mut self.bitqueue))
            .map(|()| acc.value())
        } else {
            Err(io::Error::new(io::ErrorKind::InvalidInput,
                               "excessive bits for type read"))
        }
    }

    /// Skips the given number of bits in the stream.
    /// Since this method does not need an accumulator,
    /// it may be slightly faster than reading to an empty variable.
    /// In addition, since there is no accumulator,
    /// there is no upper limit on the number of bits
    /// which may be skipped.
    /// These bits are still read from the stream, however,
    /// and are never skipped via a `seek` method.
    ///
    /// # Errors
    ///
    /// Passes along any I/O error from the underlying stream.
    ///
    /// # Examples
    /// ```
    /// use std::io::{Read, Cursor};
    /// use bitstream_io::{BigEndian, BitReader};
    /// let data = [0b10110111];
    /// let mut cursor = Cursor::new(&data);
    /// let mut reader = BitReader::<BigEndian>::new(&mut cursor);
    /// assert!(reader.skip(3).is_ok());
    /// assert_eq!(reader.read::<u8>(5).unwrap(), 0b10111);
    /// ```
    ///
    /// ```
    /// use std::io::{Read, Cursor};
    /// use bitstream_io::{LittleEndian, BitReader};
    /// let data = [0b10110111];
    /// let mut cursor = Cursor::new(&data);
    /// let mut reader = BitReader::<LittleEndian>::new(&mut cursor);
    /// assert!(reader.skip(3).is_ok());
    /// assert_eq!(reader.read::<u8>(5).unwrap(), 0b10110);
    /// ```
    pub fn skip(&mut self, mut bits: u32) -> Result<(), io::Error> {
        use std::cmp::min;

        let to_drop = min(self.bitqueue.len(), bits);
        if to_drop != 0 {
            self.bitqueue.drop(to_drop);
            bits -= to_drop;
        }

        skip_aligned(&mut self.reader, bits / 8)
        .and_then(|()| skip_unaligned(&mut self.reader,
                                      bits % 8,
                                      &mut self.bitqueue))
    }

    /// Completely fills the given buffer with whole bytes.
    /// If the stream is already byte-aligned, it will typically map
    /// to a faster `read_exact` call.  Otherwise it will read
    /// bytes individually in 8-bit increments.
    ///
    /// # Errors
    ///
    /// Passes along any I/O error from the underlying stream.
    ///
    /// # Example
    /// ```
    /// use std::io::{Read, Cursor};
    /// use bitstream_io::{BigEndian, BitReader};
    /// let data = b"foobar";
    /// let mut cursor = Cursor::new(&data);
    /// let mut reader = BitReader::<BigEndian>::new(&mut cursor);
    /// assert!(reader.skip(24).is_ok());
    /// let mut buf = [0;3];
    /// assert!(reader.read_bytes(&mut buf).is_ok());
    /// assert_eq!(&buf, b"bar");
    /// ```
    pub fn read_bytes(&mut self, buf: &mut [u8]) -> Result<(), io::Error> {
        if self.byte_aligned() {
            self.reader.read_exact(buf)
        } else {
            for b in buf.iter_mut() {
                *b = self.read::<u8>(8)?;
            }
            Ok(())
        }
    }

    /// Counts the number of 1 bits in the stream until the next
    /// 0 bit and returns the amount read.
    /// Because this field is variably-sized and may be large,
    /// its output is always a `u32` type.
    ///
    /// # Errors
    ///
    /// Passes along any I/O error from the underlying stream.
    ///
    /// # Examples
    /// ```
    /// use std::io::{Read, Cursor};
    /// use bitstream_io::{BigEndian, BitReader};
    /// let data = [0b01110111, 0b11111110];
    /// let mut cursor = Cursor::new(&data);
    /// let mut reader = BitReader::<BigEndian>::new(&mut cursor);
    /// assert_eq!(reader.read_unary0().unwrap(), 0);
    /// assert_eq!(reader.read_unary0().unwrap(), 3);
    /// assert_eq!(reader.read_unary0().unwrap(), 10);
    /// ```
    ///
    /// ```
    /// use std::io::{Read, Cursor};
    /// use bitstream_io::{LittleEndian, BitReader};
    /// let data = [0b11101110, 0b01111111];
    /// let mut cursor = Cursor::new(&data);
    /// let mut reader = BitReader::<LittleEndian>::new(&mut cursor);
    /// assert_eq!(reader.read_unary0().unwrap(), 0);
    /// assert_eq!(reader.read_unary0().unwrap(), 3);
    /// assert_eq!(reader.read_unary0().unwrap(), 10);
    /// ```
    pub fn read_unary0(&mut self) -> Result<u32, io::Error> {
        if self.bitqueue.is_empty() {
            read_aligned_unary(&mut self.reader,
                               0b11111111,
                               &mut self.bitqueue).map(
                |u| u + self.bitqueue.pop_1())
        } else if self.bitqueue.all_1() {
            let base = self.bitqueue.len();
            self.bitqueue.clear();
            read_aligned_unary(&mut self.reader,
                               0b11111111,
                               &mut self.bitqueue).map(
                |u| base + u + self.bitqueue.pop_1())
        } else {
            Ok(self.bitqueue.pop_1())
        }
    }

    /// Counts the number of 0 bits in the stream until the next
    /// 1 bit and returns the amount read.
    /// Because this field is variably-sized and may be large,
    /// its output is always a `u32` type.
    ///
    /// # Errors
    ///
    /// Passes along any I/O error from the underlying stream.
    ///
    /// # Examples
    /// ```
    /// use std::io::{Read, Cursor};
    /// use bitstream_io::{BigEndian, BitReader};
    /// let data = [0b10001000, 0b00000001];
    /// let mut cursor = Cursor::new(&data);
    /// let mut reader = BitReader::<BigEndian>::new(&mut cursor);
    /// assert_eq!(reader.read_unary1().unwrap(), 0);
    /// assert_eq!(reader.read_unary1().unwrap(), 3);
    /// assert_eq!(reader.read_unary1().unwrap(), 10);
    /// ```
    ///
    /// ```
    /// use std::io::{Read, Cursor};
    /// use bitstream_io::{LittleEndian, BitReader};
    /// let data = [0b00010001, 0b10000000];
    /// let mut cursor = Cursor::new(&data);
    /// let mut reader = BitReader::<LittleEndian>::new(&mut cursor);
    /// assert_eq!(reader.read_unary1().unwrap(), 0);
    /// assert_eq!(reader.read_unary1().unwrap(), 3);
    /// assert_eq!(reader.read_unary1().unwrap(), 10);
    /// ```
    pub fn read_unary1(&mut self) -> Result<u32, io::Error> {
        if self.bitqueue.is_empty() {
            read_aligned_unary(&mut self.reader,
                               0b00000000,
                               &mut self.bitqueue).map(
                |u| u + self.bitqueue.pop_0())
        } else if self.bitqueue.all_0() {
            let base = self.bitqueue.len();
            self.bitqueue.clear();
            read_aligned_unary(&mut self.reader,
                               0b00000000,
                               &mut self.bitqueue).map(
                |u| base + u + self.bitqueue.pop_0())
        } else {
            Ok(self.bitqueue.pop_0())
        }
    }

    /// Returns true if the stream is aligned at a whole byte.
    ///
    /// # Example
    /// ```
    /// use std::io::{Read, Cursor};
    /// use bitstream_io::{BigEndian, BitReader};
    /// let data = [0];
    /// let mut cursor = Cursor::new(&data);
    /// let mut reader = BitReader::<BigEndian>::new(&mut cursor);
    /// assert_eq!(reader.byte_aligned(), true);
    /// assert!(reader.skip(1).is_ok());
    /// assert_eq!(reader.byte_aligned(), false);
    /// assert!(reader.skip(7).is_ok());
    /// assert_eq!(reader.byte_aligned(), true);
    /// ```
    #[inline(always)]
    pub fn byte_aligned(&self) -> bool {
        self.bitqueue.is_empty()
    }

    /// Throws away all unread bit values until the next whole byte.
    /// Does nothing if the stream is already aligned.
    ///
    /// # Example
    /// ```
    /// use std::io::{Read, Cursor};
    /// use bitstream_io::{BigEndian, BitReader};
    /// let data = [0x00, 0xFF];
    /// let mut cursor = Cursor::new(&data);
    /// let mut reader = BitReader::<BigEndian>::new(&mut cursor);
    /// assert_eq!(reader.read::<u8>(4).unwrap(), 0);
    /// reader.byte_align();
    /// assert_eq!(reader.read::<u8>(8).unwrap(), 0xFF);
    /// ```
    #[inline(always)]
    pub fn byte_align(&mut self) {
        self.bitqueue.clear()
    }

    /// Given a compiled Huffman tree, reads bits from the stream
    /// until the next symbol is encountered.
    ///
    /// # Errors
    ///
    /// Passes along any I/O error from the underlying stream.
    ///
    /// # Example
    /// ```
    /// use std::io::{Read, Cursor};
    /// use bitstream_io::{BigEndian, BitReader};
    /// use bitstream_io::huffman::compile_read_tree;
    /// let tree = compile_read_tree(
    ///     vec![('a', vec![0]),
    ///          ('b', vec![1, 0]),
    ///          ('c', vec![1, 1, 0]),
    ///          ('d', vec![1, 1, 1])]).unwrap();
    /// let data = [0b10110111];
    /// let mut cursor = Cursor::new(&data);
    /// let mut reader = BitReader::<BigEndian>::new(&mut cursor);
    /// assert_eq!(reader.read_huffman(&tree).unwrap(), 'b');
    /// assert_eq!(reader.read_huffman(&tree).unwrap(), 'c');
    /// assert_eq!(reader.read_huffman(&tree).unwrap(), 'd');
    /// ```
    pub fn read_huffman<T>(&mut self, tree: &[ReadHuffmanTree<E,T>]) ->
        Result<T,io::Error> where T: Clone {

        let mut result: &ReadHuffmanTree<E,T> =
            &tree[self.bitqueue.to_state()];
        loop {
            match result {
                &ReadHuffmanTree::Done(
                    ref value, ref queue_val, ref queue_bits, _) => {
                    self.bitqueue.set(*queue_val, *queue_bits);
                    return Ok(value.clone())
                }
                &ReadHuffmanTree::Continue(ref tree) => {
                    result = &tree[read_byte(self.reader)? as usize];
                }
                &ReadHuffmanTree::InvalidState => {panic!("invalid state");}
            }
        }
    }

    /// Consumes reader and returns any un-read partial byte
    /// as a `(bits, value)` tuple.
    ///
    /// # Examples
    /// ```
    /// use std::io::{Read, Cursor};
    /// use bitstream_io::{BigEndian, BitReader};
    /// let data = [0b1010_0101, 0b0101_1010];
    /// let mut cursor = Cursor::new(&data);
    /// let mut reader = BitReader::<BigEndian>::new(&mut cursor);
    /// assert_eq!(reader.read::<u16>(9).unwrap(), 0b1010_0101_0);
    /// let (bits, value) = reader.into_unread();
    /// assert_eq!(bits, 7);
    /// assert_eq!(value, 0b101_1010);
    /// ```
    ///
    /// ```
    /// use std::io::{Read, Cursor};
    /// use bitstream_io::{BigEndian, BitReader};
    /// let data = [0b1010_0101, 0b0101_1010];
    /// let mut cursor = Cursor::new(&data);
    /// let mut reader = BitReader::<BigEndian>::new(&mut cursor);
    /// assert_eq!(reader.read::<u16>(8).unwrap(), 0b1010_0101);
    /// let (bits, value) = reader.into_unread();
    /// assert_eq!(bits, 0);
    /// assert_eq!(value, 0);
    /// ```
    #[inline(always)]
    pub fn into_unread(self) -> (u32,u8) {
        (self.bitqueue.len(), self.bitqueue.value())
    }
}

impl<'a> BitReader<'a, BigEndian> {
    /// Reads a twos-complement signed value from the stream with
    /// the given number of bits.
    ///
    /// # Errors
    ///
    /// Passes along any I/O error from the underlying stream.
    /// Also returns an error if the output type is too small
    /// to hold the requested number of bits.
    ///
    /// # Examples
    /// ```
    /// use std::io::{Read, Cursor};
    /// use bitstream_io::{BigEndian, BitReader};
    /// let data = [0b10110111];
    /// let mut cursor = Cursor::new(&data);
    /// let mut reader = BitReader::<BigEndian>::new(&mut cursor);
    /// assert_eq!(reader.read_signed::<i8>(4).unwrap(), -5);
    /// assert_eq!(reader.read_signed::<i8>(4).unwrap(), 7);
    /// ```
    ///
    /// ```
    /// use std::io::{Read, Cursor};
    /// use bitstream_io::{BigEndian, BitReader};
    /// let data = [0;10];
    /// let mut cursor = Cursor::new(&data);
    /// let mut r = BitReader::<BigEndian>::new(&mut cursor);
    /// assert!(r.read_signed::<i8>(9).is_err());   // can't read 9 bits to i8
    /// assert!(r.read_signed::<i16>(17).is_err()); // can't read 17 bits to i16
    /// assert!(r.read_signed::<i32>(33).is_err()); // can't read 33 bits to i32
    /// assert!(r.read_signed::<i64>(65).is_err()); // can't read 65 bits to i64
    /// ```
    pub fn read_signed<S>(&mut self, bits: u32) -> Result<S, io::Error>
        where S: SignedNumeric {

        if bits <= S::bits_size() {
            let is_negative = self.read_bit()?;
            let unsigned = self.read::<S>(bits - 1)?;
            Ok(if is_negative {unsigned.as_negative(bits)} else {unsigned})
        } else {
            Err(io::Error::new(io::ErrorKind::InvalidInput,
                               "excessive bits for type read"))
        }
    }
}

impl<'a> BitReader<'a, LittleEndian> {
    /// Reads a twos-complement signed value from the stream with
    /// the given number of bits.
    ///
    /// # Errors
    ///
    /// Passes along any I/O error from the underlying stream.
    /// Also returns an error if the output type is too small
    /// to hold the requested number of bits.
    ///
    /// # Examples
    /// ```
    /// use std::io::{Read, Cursor};
    /// use bitstream_io::{LittleEndian, BitReader};
    /// let data = [0b10110111];
    /// let mut cursor = Cursor::new(&data);
    /// let mut reader = BitReader::<LittleEndian>::new(&mut cursor);
    /// assert_eq!(reader.read_signed::<i8>(4).unwrap(), 7);
    /// assert_eq!(reader.read_signed::<i8>(4).unwrap(), -5);
    /// ```
    ///
    /// ```
    /// use std::io::{Read, Cursor};
    /// use bitstream_io::{LittleEndian, BitReader};
    /// let data = [0;10];
    /// let mut cursor = Cursor::new(&data);
    /// let mut r = BitReader::<LittleEndian>::new(&mut cursor);
    /// assert!(r.read_signed::<i8>(9).is_err());   // can't read 9 bits to i8
    /// assert!(r.read_signed::<i16>(17).is_err()); // can't read 17 bits to i16
    /// assert!(r.read_signed::<i32>(33).is_err()); // can't read 33 bits to i32
    /// assert!(r.read_signed::<i64>(65).is_err()); // can't read 65 bits to i64
    /// ```
    pub fn read_signed<S>(&mut self, bits: u32) -> Result<S, io::Error>
        where S: SignedNumeric {

        if bits <= S::bits_size() {
            let unsigned = self.read::<S>(bits - 1)?;
            let is_negative = self.read_bit()?;
            Ok(if is_negative {unsigned.as_negative(bits)} else {unsigned})
        } else {
            Err(io::Error::new(io::ErrorKind::InvalidInput,
                               "excessive bits for type read"))
        }
    }
}

#[inline]
fn read_byte(reader: &mut io::Read) -> Result<u8,io::Error> {
	let mut buf = [0; 1];
    reader.read_exact(&mut buf).map(|()| buf[0])
}

fn read_aligned<E,N>(reader: &mut io::Read,
                     bytes: u32,
                     acc: &mut BitQueue<E,N>) -> Result<(), io::Error>
    where E: Endianness, N: Numeric {

    // 64-bit types are the maximum supported
    debug_assert!(bytes <= 8);

    let mut buf = [0; 8];
    reader.read_exact(&mut buf[0..bytes as usize])
          .map(|()| {for b in &buf[0..bytes as usize]
                     {acc.push(8, N::from_u8(*b))}})
}

fn skip_aligned(reader: &mut io::Read,
                mut bytes: u32) -> Result<(), io::Error> {
    use std::cmp::min;

    /*skip 8 bytes at a time
      (unlike with read_aligned, bytes may be larger than any native type)*/
    let mut buf = [0; 8];
    while bytes > 0 {
        let to_read = min(8, bytes);
        reader.read_exact(&mut buf[0..to_read as usize])?;
        bytes -= to_read;
    }
    Ok(())
}


#[inline]
fn read_unaligned<E,N>(reader: &mut io::Read,
                       bits: u32,
                       acc: &mut BitQueue<E,N>,
                       rem: &mut BitQueue<E,u8>) -> Result<(), io::Error>
    where E: Endianness, N: Numeric {

    debug_assert!(bits <= 8);

    if bits > 0 {
        read_byte(reader).map(|byte|
            {rem.set(byte, 8);
             acc.push(bits, N::from_u8(rem.pop(bits)))})
    } else {
        Ok(())
    }
}

#[inline]
fn skip_unaligned<E>(reader: &mut io::Read,
                    bits: u32,
                    rem: &mut BitQueue<E,u8>) -> Result<(), io::Error>
    where E: Endianness {

    debug_assert!(bits <= 8);

    if bits > 0 {
        rem.set(read_byte(reader)?, 8);
        rem.pop(bits);
    }
    Ok(())
}

#[inline]
fn read_aligned_unary<E>(reader: &mut io::Read,
                        continue_val: u8,
                        rem: &mut BitQueue<E,u8>) -> Result<u32,io::Error>
    where E: Endianness {
    let mut acc = 0;
    let mut byte = read_byte(reader)?;
    while byte == continue_val {
        acc += 8;
        byte = read_byte(reader)?;
    }
    rem.set(byte, 8);
    Ok(acc)
}